NQR of the 1:2 Molecular Complex of 1,4-Diazabicyclo[2.2.2]octane with Chloroform

Hisao Negita, Toshinori Suzuki, Tsuneo Kubo, Michio Maekawa, Shinei Gima, and Tsutomu Okuda* Department of Chemistry, Faculty of Science, Hiroshima University, Naka-ku, Hiroshima 730 (Received March 5, 1984)

The ¹⁴N and ³⁵Cl NQR and ¹⁴N spin-lattice relaxation have been studied at various temperatures on the 1:2 molecular complex of 1,4-diazabicyclo[2.2.2]octane (DABCO) with CHCl₃. Two transitions have been observed near 123 K and 138 K. In the lowest temperature phase a minimum in the T_1 was observed and attributed to the axial reorientation of DABCO molecules. The activation energy for this motion was determined to be 12.1 ± 1.2 kJ mol ⁻¹. The electron population is discussed for the DABCO complexes with CHCl₃ and CDCl₃ using the Townes-Dailey treatment.

DABCO has been known to form a molecular complex with chloroform by charge transfer from the former to the latter. The crystal structure of this complex has not been determined as yet. DABCO itself is well known as a plastic crystal and its motions have been studied in detail by NMR and NQR.1,2) Since DABCO is globular, its motion in the complex will offer information about intermolecular interactions and, consequently, a clue to the molecular structure. Lucus and Guibé have already measured 14N and 35Cl NOR of this complex.³⁾ They reported the average ¹⁴N NQR frequency and three 35Cl NQR lines at liquid nitrogen temperature. We observed the temperature dependence of the ¹⁴N and ³⁵Cl NOR lines and the ¹⁴N spin-lattice relaxation times of the complex in order to examine the molecular motions and intermolecular interactions.

Experimental

The molecular complex was prepared by adding chloroform to DABCO purified by sublimation in an evacuated vessel and then cooling the mixture gently below 250 K. ¹⁴N NQR measurements were carried out using a pulsed NQR spectrometer.⁴⁾ On the other hand, ³⁵Cl NQR spectra were observed using a superregenerative spectrometer. The temperature was measured by the use of a copperconstantan thermocouple. The frequency was checked by means of a frequency counter.

Results and Discussion

Temperature Dependence of 14N and 35Cl NQR Lines.

Table 1. ¹⁴N NQR Parameters in DABCO complexes at liquid nitrogen temperature

Complex	ν_/kHz ^{a)}	$\nu_+/\mathrm{kHz}^{\mathrm{a})}$	η/%	$(e^{2}Qq/h)/kHz$
C ₆ H ₁₂ N ₂ ·2CHCl ₃		1.0	0	4734.7
	3545.8	3583.9	1.603	4753.1
	3532.7	3567.5	1.470	4730.9
	3528.9	3562.2	1.409	4734.7
$C_6H_{12}N_2 \cdot 2CDCl_3$ 3553.1		3.1	0	4737.5
	3551.1	3587.6	1.534	4759.1
	3535.9	3571.9	1.519	4738.5
	3532.8	3564.5	1.340	4731.5

a) Experimental error is within $\pm 0.1 \, \text{kHz}$.

Tables 1 and 2 show the NQR frequencies for the DABCO complexes at liquid nitrogen temperature. Seven ¹⁴N and eleven ³⁵Cl resonance lines were observed for the complex of DABCO with CHCl₃ whereas seven ¹⁴N and ten ³⁵Cl resonance lines were observed for the complex of DABCO with CDCl₃.

In the complex of DABCO with CHCl₃, the average frequency of four ¹⁴N NQR lines (except three ν_+ lines) is 3.5396MHz and agrees well with the value of 3.5397MHz reported by Lucus and Guibé.³⁾ For ³⁵Cl NQR lines, frequencies of three among eleven resonance lines coincide approximately with the three frequencies, 37.666, 37.853, and 37.955MHz, reported by Lucus and Guibé.³⁾ It is not possible at present to interpret the discrepancy in the number of ³⁵Cl resonance lines between the present study and Ref. 3.

Figure 1 shows the temperature dependence of ¹⁴N NQR frequencies in the CHCl₃ complex. Seven resonance lines at liquid nitrogen temperature are denoted as (a), (b), (c), ..., and (g) as shown in Fig. 1. (a) and (b) as well as (e) and (f) approached each other with increasing temperature and coincided at about 123 K. The intensity of (d) was about twice as strong as those of the rest at liquid nitrogen temperature. As the temperature was raised, (d) became weak from 115 K and faded out near 123 K. Therefore, the seven resonance lines reduced to four near 123 K. These lines disappeared at 138 K but one broad line 50 kHz wide appeared just above this temperature as shown by the solid line in Fig. 1. As the temperature was raised, the

TABLE 2. 35Cl NQR Frequencies of DABCO COMPLEXES AT LIQUID NITROGEN TEMPERATURE

Complex	$ u/\mathrm{MHz}^{\mathbf{a})}$			
C ₆ H ₁₂ N ₂ ·2CHCl ₃	37.122	37.360	37.402	
	37.491	37.642	37.728 ^{b)}	
	37.818	37.831	37.917	
	37.932	38.059		
C ₆ H ₁₂ N ₂ ·2CDCl ₃	37.135	37.368	37.412	
	37.498	37.648	37.737°)	
	37.833 ^{b)}	37.923	37.942	
	38.059			

a) Experimental error is within ±0.005 MHz. b) Double intensity line. c) Doublet.

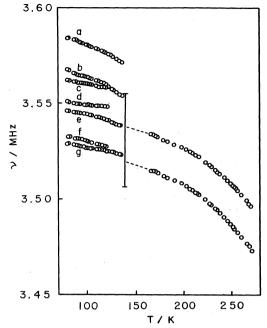


Fig. 1. Temperature dependence of ¹⁴N NQR frequencies in C₆H₁₂N₂·2CHCl₃.

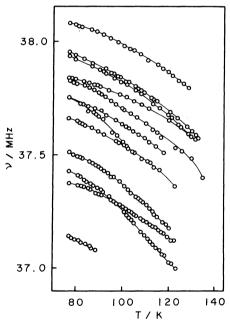


Fig. 2. Temperature dependence of ³⁵Cl NQR frequencies in C₆H₁₂N₂·2CHCl₃.

linewidth decreased gradually and near 165 K the broad line split into two components. Since it was impossible to determine the resonance frequency with accuracy over the temperature range from 138 K to 165 K, the resonance lines are shown by the dotted lines in Fig. 1.

On the other hand, the temperature dependence of ³⁵Cl NQR frequencies in the CHCl₃ complex is shown in Fig. 2. Eleven resonance lines were observed at liquid nitrogen temperature, indicating that there are at least four CHCl₃ molecules in this complex. By analogy with ¹⁴N resonance lines, the number of ³⁵Cl resonance lines decreased to half near 123 K and faded out

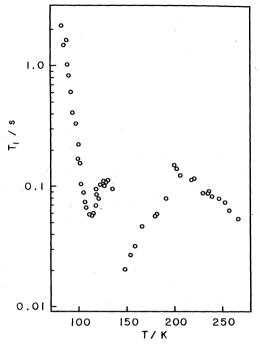


Fig. 3. Temperature dependence of ¹⁴N spin-lattice relaxation times in C₆H₁₂N₂·2CHCl₃. The spin-lattice relaxation times were measured for the (e) line between 80 K and 138 K and for the higher resonance line above 138 K.

near 138 K. However, no ³⁵Cl resonance lines appeared above 138 K up to the melting point (ca. 273 K).

¹⁴N Spin-Lattice Relaxation Time. Figure 3 shows the temperature dependence of ¹⁴N spin-lattice relaxation time in the complex of DABCO with CHCl₃. In the temperature range from 80 K to 123 K, the most remarkable feature is the appearance of the T_1 minimum at about 115 K. This process can be attributed to the reorientation of the DABCO molecule about its three-fold axis. The activation energy for this motion was calculated. In this case, the dominant relaxation mechanism can be regarded as magnetic dipole-dipole interaction between ¹⁴N and nearby protons. Then, the relaxation time is given by the following equation: ¹⁰

$$1/T_1 = C\tau/(1+\omega_{Q}^2\tau^2), \tag{1}$$

where C is a constant related to the intrinsic nature of the molecular motion. τ is the correlation time of the motion, and ω_Q is the resonance angular frequency. Assuming that the Arrhenius' relation for the correlation time, the following equation holds:

$$\tau = \tau_0 \exp(E_a/RT), \tag{2}$$

where τ_0 is the inverse frequency factor and E_a is the activation energy for the motion. E_a was calculated to be 12.1 ± 1.2 kJ mol⁻¹ for this motion from Eqs. 1 and 2 and the observed T_1 values. In the case of DABCO itself, the activation energy about the N-N axis was found to be 34.2 ± 1.3 kJ mol⁻¹ by Zussman *et al.*¹⁾ This

value is nearly three times as large as that of the present complex. This finding suggests that the packing of the molecules is somewhat loose in the complex because the DABCO molecule lies between two bulky chloroform molecules.

At T_1 minimum, $\omega_Q \tau = 1$ and the following equation holds:¹⁾

$$T_1^{\min} = (8/81)(\omega_0 r_{NH}^6/\gamma_N^2 \gamma_H^2 h^2),$$
 (3)

where $r_{\rm NH}$ is the N-H distance in DABCO. $\gamma_{\rm N}$ and $\gamma_{\rm H}$ are the gyromagnetic ratio of nitrogen and hydrogen, respectively. Assuming that the structure of DABCO in the complex is the same as that in the pure DABCO crystal, ¹⁾ the value of T_1 minimum was calculated to be 60 ms. This is in good agreement with the observed value, 63 ms.

Bond Nature. In the case of the ¹⁴N resonance, a pair of resonance lines, ν_- and ν_+ , are observed and their frequencies are expressed as follow:

$$\nu_{\pm} = (e^2 Q q/4h)(3\pm \eta),$$
 (4)

where e^2Qq/h and η are the quadrupole coupling constant and the asymmetry parameter, respectively. In the complex of DABCO with CHCl₃, two ¹⁴N resonance lines at temperatures above 138K were found to be one pair of ν_{-} and ν_{+} by measuring their Zeeman effect. Below 138 K the small intensity and small spacing of the multiple resonance lines make the measurement of the Zeeman effect unavailable. However, the temperature dependence of the ¹⁴N and ³⁵Cl resonance frequencies makes their assignment to resonance lines possible. Since there are at least four crystallographically nonequivalent CHCl3 molecules at liquid nitrogen temperature as described above, four nonequivalent nitrogen atoms should exist: There are seven 14N resonance lines consisting of three pairs of ν_{-} and ν_{+} and one single line. Between 123 K and 138 K, there are four 14N and six 35Cl resonance lines, indicating the presence of two nonequivalent nitrogen and chloroform. Since (b) and (f) lines coincided to (a) and (e) lines, respectively, at the first transition point as shown in Fig. 1, (a) and (e), (b) and (f), and (c) and (g) are paired. The asymmetry parameters and quadrupole

coupling constants obtained by this pairing are listed in Table 1.

¹⁴N resonance lines of the complex of DABCO with CDCl₃ are also listed in Table 1 together with the asymmetry parameters and quadrupole coupling constants evaluated by the same pairing as that of the CHCl₃ complex. The ¹⁴N resonance frequencies of the CDCl₃ complex shift to the higher frequency region than those of the complex with CHCl₃ in the same manner as the ³⁵Cl resonance frequencies. In both complexes the nitrogen atoms are considered to form sp³ hybrid orbitals. Three hybrid orbitals form N-C sigma bonds and the rest is a lone pair nonbonding orbital. Therefore, the quadrupole coupling constant is given by,⁶)

$$e^2Qq/h = (3/4)(m-n)e^2Qq_0/h,$$
 (5)

where m and n are the electron population in the lone pair and sigma bond orbitals, respectively, and e^2Qq_0/h is the quadrupole coupling constant by a 2p electron of nitrogen and is assumed to be $11.3\,\mathrm{MHz}$. From Eq. 5 and the average coupling constant, the value of (m-n) is computed to be 0.5599 and 0.5595 for the CHCl₃ and CDCl₃ complexes, respectively. This indicates that the electron population in the lone pair nonbonding orbital in the CDCl₃ is larger by 0.0004 than those in the CHCl₃ if the frequency difference is taken to arise only from hydrogen bonding formation.

References

- 1) A. Zussman and S. Alexander, J. Chem. Phys., 48, 3534 (1968).
- 2) P. J. Haigh and L. Guibé, C. R. Acad. Sci., 261, 2328 (1965).
 - 3) A. D. Lucus and L. Guibé, Mol. Phys., 19, 88 (1979).
- 4) H. Negita, T. Kubo, M. Maekawa, A. Ueda, and T. Okuda, *Bull. Chem. Soc. Jpn.*, **52**, 1881 (1979).
 - 5) G. W. Smith, J. Chem. Phys., 43, 4325 (1965).
- 6) R. A. Marino, Adv. Nucl. Quadrupole Reson., 1, 391 (1974).
- 7) R. Ikeda, S. Noda, D. Nakamura, and M. Kubo, *J. Magn. Reson.*, **5**, 54 (1971).